Analyzing scRNA seq data and want to analyze it's DEG with DESeq2
0
0
Entering edit mode
10 months ago
kayah ▴ 20

I have four dataset which is young_male, young_female, old_male, old_female. And I want to analyze it with DESeq2. The question is which data should I use for DESeq2. If I analyze it with bulk RNA seq then I'm gonna use feature counts file but if I want to analyze sc RNA seq then what file should I use? for further explanation of my data, I already did 'RunHarmony' integration process. and I upload my code for more understanding! ps. I want to transform my data assay to SCT but I failed...

library(Seurat)
library(SeuratObject)
library(dplyr)
library(tidyverse)
library(patchwork)

#data loading
WAT_M_Y.data <- Read10X(data.dir = "~/Desktop/GSE137869/2ndtry/WAT-M-Y/") 

colnames(WAT_M_Y.data) <- gsub("_", "-", colnames(WAT_M_Y.data))

WAT_M_Y <- CreateSeuratObject(counts = WAT_M_Y.data, 
                              project = "WAT_M_Y",
                              min.cells = 3,
                              min.features = 200)

WAT_M_Y [["percent.mt"]]<-PercentageFeatureSet(WAT_M_Y, pattern =  "^Mt-")


WAT_M_O.data <- Read10X(data.dir = 
                          "~/Desktop/GSE137869/GSE137869_aging/WAT-M-O/") 
colnames(WAT_M_O.data) <- gsub("_", "-", colnames(WAT_M_O.data))
WAT_M_O <- CreateSeuratObject(counts = WAT_M_O.data, 
                              project = "WAT_M_O",
                              min.cells = 3,
                              min.features = 200)

WAT_M_O [["percent.mt"]]<-PercentageFeatureSet(WAT_M_O, pattern =  "^Mt-")

WAT_F_Y.data <- Read10X(data.dir = 
                          "~/Desktop/GSE137869/GSE137869_aging/WAT-F-Y/") 
colnames(WAT_F_Y.data) <- gsub("_", "-", colnames(WAT_F_Y.data))
WAT_F_Y <- CreateSeuratObject(counts = WAT_F_Y.data, 
                              project = "WAT_F_Y",
                              min.cells = 3,
                              min.features = 200)

WAT_F_Y [["percent.mt"]]<-PercentageFeatureSet(WAT_F_Y, pattern =  "^Mt-")


WAT_F_O.data <- Read10X(data.dir = 
                          "~/Desktop/GSE137869/GSE137869_aging/WAT-F-O/") 
colnames(WAT_F_O.data) <- gsub("_", "-", colnames(WAT_F_O.data))
WAT_F_O <- CreateSeuratObject(counts = WAT_F_O.data, 
                              project = "WAT_F_O",
                              min.cells = 3,
                              min.features = 200)

WAT_F_O [["percent.mt"]]<-PercentageFeatureSet(WAT_F_O, pattern =  "^Mt-")

young_1 <- subset(WAT_M_Y, subset  = nFeature_RNA > 200 & nFeature_RNA < 2500 & nCount_RNA<15000 & percent.mt < 10)
young_2 <- subset(WAT_F_Y, subset = nFeature_RNA > 200 & nFeature_RNA < 2500 & nCount_RNA<15000 & percent.mt < 10)
old_1 <- subset(WAT_M_O, subset  = nFeature_RNA > 200 & nFeature_RNA < 2500 & nCount_RNA<15000 & percent.mt < 10)
old_2 <- subset(WAT_F_O, subset  = nFeature_RNA > 200 & nFeature_RNA < 2500 & nCount_RNA<15000 & percent.mt < 10)

saveRDS(young_1, "seurat_object_young1.rds")
saveRDS(young_2, "seurat_object_young2.rds")
saveRDS(old_1, "seurat_object_old1.rds")
saveRDS(old_2, "seurat_object_old2.rds")

library(devtools) library(dplyr) library(ggplot2) library(Seurat) library(SeuratObject) library(sp) library(patchwork) library(harmony) library(Rcpp) ?library(SeuratWrappers) library(clustree) library(cowplot) library(RColorBrewer) library(pheatmap) install.packages("FindvariableFeatures")

young_1 <- readRDS('~/Desktop/GSE137869/2ndtry/seurat_object_young1.rds')
young_2 <- readRDS('~/Desktop/GSE137869/2ndtry/seurat_object_young2.rds')
old_1 <- readRDS('~/Desktop/GSE137869/2ndtry/seurat_object_old1.rds')
old_2 <- readRDS('~/Desktop/GSE137869/2ndtry/seurat_object_old2.rds')

young_1 <- NormalizeData(young_1)
young_2 <- NormalizeData(young_2)
old_1 <- NormalizeData(old_1)
old_2 <- NormalizeData(old_2)

library(glmGamPoi)

WAT <- merge(young_1, y = c(young_2, old_1, old_2), 
             add.cell.ids = c("young1", "young2", "old1", "old2"),
             project = "WAT")
WAT <- NormalizeData(WAT) 
WAT <- FindVariableFeatures(WAT,selection.method = "vst", nfeatures = 2000)
all.genes <- rownames(WAT)
WAT <-ScaleData(WAT, features = all.genes)
View(WAT@meta.data)
#WAT <- SCTransform(WAT, vars.to.regress = c("percent.mt"))
WAT <- RunPCA(WAT, npcs = 50)
View(WAT@meta.data)
DimPlot(WAT, reduction = "pca")

table(WAT$type)

harmonized_WAT <- RunHarmony(WAT,
                             group.by.vars = "orig.ident",
                             reduction ="pca",
                             reduction.save = "harmony")

harmonized_WAT <- RunUMAP(harmonized_WAT, reduction = "harmony",dims = 1:20)

harmonized_WAT <- FindNeighbors(harmonized_WAT, reduction = "harmony",dims = 1:20)

harmonized_WAT_0.6 <- FindClusters(harmonized_WAT, resolution = c(0.6))
DimPlot(harmonized_WAT_0.6, 
        label = TRUE, 
        split.by = "orig.ident")

And my data file looks like this enter image description here

scRNA-seq DEG DESeq2 • 382 views
ADD COMMENT
0
Entering edit mode

I do this for finding differently expressed genes between young and old group. My final destination is senescence marker(gene). I also want to draw Heatmap. Thank you so much

ADD REPLY

Login before adding your answer.

Traffic: 2306 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6