I find that some article will "correct the test statistics" in GWAS when the summary data's LD intercept is too high(e.g. >1.05). But I want to know how to achieve this? Is it dividing the z-score of all SNPS by the LD intercept?
I will be so grateful if anyone could help.
Can you provide a reference please?
Sure, the article is "Multi-ancestry genome-wide association study of major depression aids locus discovery, fine mapping, gene prioritization and causal inference", and the part I mentioned is "To account for the minor inflation found in the Hispanic/Latin American samples (lambda1,000 = 1.002 and linkage disequilibrium score regression (LDSC) intercept 1.051; Supplementary Table 2), we corrected test statistics for this analysis based on the LDSC intercept."