scRNA Cell Clustering Defined by Normalized Counts
0
0
Entering edit mode
8 months ago
sakura • 0

Hello! I ran SCTransform from Seurat on only cancer cells from a few patients (individually) and some cells are showing very low gene expression for all genes. When running FindAllMarkers the clusters with these cells are vastly defined by negative markers: Top 10 Genes returned for cluster in question (light blue bottom right): enter image description here

I also noted the pattern of expression matches with nCount_SCT (3rd row, 3rd from left) and this is true of my other samples.

After extracting a column from the counts matrix of of SCT and RNA for a single cell from each end of the UMAP, I saw SCTransform resulted in counts dropping for that cell (Row 2-3, histogram of expression across all genes for one cell pre and post transformation, row 4-5 show expression for each gene pre and post transformation):

enter image description here

Is there anything I can do about this? Why is this happening?

Thank you for your help!

My Session:

R version 4.3.2 (2023-10-31)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 22.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3 
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/libopenblasp-r0.3.20.so;  LAPACK version 3.10.0

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C               LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8     LC_MONETARY=en_US.UTF-8   
 [6] LC_MESSAGES=en_US.UTF-8    LC_PAPER=en_US.UTF-8       LC_NAME=C                  LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C       

time zone: Etc/UTC
tzcode source: system (glibc)

attached base packages:
[1] stats     graphics  grDevices utils     datasets  methods   base     

other attached packages:
 [1] lubridate_1.9.3       forcats_1.0.0         purrr_1.0.2           readr_2.1.5           tidyr_1.3.1           tibble_3.2.1          tidyverse_2.0.0      
 [8] qs_0.25.7             stringr_1.5.1         openxlsx_4.2.5.2      dplyr_1.1.4           data.table_1.15.2     RColorBrewer_1.1-3    patchwork_1.2.0      
[15] ggplot2_3.5.0         SeuratDisk_0.0.0.9021 Seurat_5.0.1          SeuratObject_5.0.1    sp_2.1-3             

loaded via a namespace (and not attached):
  [1] RcppAnnoy_0.0.22              splines_4.3.2                 later_1.3.2                   bitops_1.0-7                  filelock_1.0.3               
  [6] polyclip_1.10-6               fastDummies_1.7.3             lifecycle_1.0.4               hdf5r_1.3.10                  globals_0.16.3               
 [11] lattice_0.22-5                MASS_7.3-60                   magrittr_2.0.3                rmarkdown_2.26                plotly_4.10.4                
 [16] yaml_2.3.8                    httpuv_1.6.14                 sctransform_0.4.1             zip_2.3.1                     spam_2.10-0                  
 [21] spatstat.sparse_3.0-3         reticulate_1.35.0             cowplot_1.1.3                 pbapply_1.7-2                 DBI_1.2.2                    
 [26] abind_1.4-5                   zlibbioc_1.48.2               Rtsne_0.17                    GenomicRanges_1.54.1          BiocGenerics_0.48.1          
 [31] RCurl_1.98-1.14               rappdirs_0.3.3                GenomeInfoDbData_1.2.11       IRanges_2.36.0                S4Vectors_0.40.2             
 [36] ggrepel_0.9.5                 irlba_2.3.5.1                 listenv_0.9.1                 spatstat.utils_3.0-4          goftest_1.2-3                
 [41] RSpectra_0.16-1               spatstat.random_3.2-3         fitdistrplus_1.1-11           parallelly_1.37.1             leiden_0.4.3.1               
 [46] codetools_0.2-19              DelayedArray_0.28.0           RApiSerialize_0.1.2           tidyselect_1.2.1              farver_2.1.1                 
 [51] UCell_2.6.2                   matrixStats_1.2.0             stats4_4.3.2                  BiocFileCache_2.10.1          spatstat.explore_3.2-6       
 [56] jsonlite_1.8.8                BiocNeighbors_1.20.2          ellipsis_0.3.2                progressr_0.14.0              ggridges_0.5.6               
 [61] survival_3.5-7                tools_4.3.2                   ica_1.0-3                     Rcpp_1.0.12                   glue_1.7.0                   
 [66] gridExtra_2.3                 SparseArray_1.2.4             xfun_0.42                     MatrixGenerics_1.14.0         GenomeInfoDb_1.38.7          
 [71] withr_3.0.0                   BiocManager_1.30.22           fastmap_1.1.1                 fansi_1.0.6                   digest_0.6.35                
 [76] timechange_0.3.0              R6_2.5.1                      mime_0.12                     colorspace_2.1-0              scattermore_1.2              
 [81] tensor_1.5                    spatstat.data_3.0-4           RSQLite_2.3.5                 utf8_1.2.4                    generics_0.1.3               
 [86] httr_1.4.7                    htmlwidgets_1.6.4             S4Arrays_1.2.1                uwot_0.1.16                   pkgconfig_2.0.3              
 [91] gtable_0.3.4                  blob_1.2.4                    lmtest_0.9-40                 SingleCellExperiment_1.24.0   XVector_0.42.0               
 [96] htmltools_0.5.7               dotCall64_1.1-1               scales_1.3.0                  Biobase_2.62.0                png_0.1-8                    
[101] knitr_1.45                    rstudioapi_0.15.0             tzdb_0.4.0                    reshape2_1.4.4                nlme_3.1-163                 
[106] curl_5.2.1                    cachem_1.0.8                  zoo_1.8-12                    BiocVersion_3.18.1            KernSmooth_2.23-22           
[111] parallel_4.3.2                miniUI_0.1.1.1                AnnotationDbi_1.64.1          pillar_1.9.0                  grid_4.3.2                   
[116] vctrs_0.6.5                   RANN_2.6.1                    promises_1.2.1                stringfish_0.16.0             dbplyr_2.4.0                 
[121] xtable_1.8-4                  cluster_2.1.4                 evaluate_0.23                 cli_3.6.2                     compiler_4.3.2               
[126] rlang_1.1.3                   crayon_1.5.2                  future.apply_1.11.1           labeling_0.4.3                plyr_1.8.9                   
[131] stringi_1.8.3                 viridisLite_0.4.2             deldir_2.0-4                  BiocParallel_1.36.0           munsell_0.5.0                
[136] Biostrings_2.70.3             lazyeval_0.2.2                spatstat.geom_3.2-9           Matrix_1.6-5                  ExperimentHub_2.10.0         
[141] RcppHNSW_0.6.0                hms_1.1.3                     bit64_4.0.5                   future_1.33.1                 KEGGREST_1.42.0              
[146] shiny_1.8.0                   SummarizedExperiment_1.32.0   interactiveDisplayBase_1.40.0 AnnotationHub_3.10.0          ROCR_1.0-11                  
[151] igraph_2.0.3                  memoise_2.0.1                 RcppParallel_5.1.7            bit_4.0.5
Normalization scRNA Seurat • 280 views
ADD COMMENT

Login before adding your answer.

Traffic: 1653 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6