I'm following the tutorial of scRNA-seq cell type annotation now(https://satijalab.org/seurat/articles/integration_mapping), but wondered that how Large Seurat file looks like. Because I want to anchor my data(which is analyzing nowdays..) to reference data but it didn't work well because of file format. for example I'm wondering that where is gene name. When I write a code like "View(mydata@meta.data)" then I can see barcode and nCount_RNA, nFeature_RNA, percent.mt, clusters but I can't find any gene name here. So my questions are how can I see gene name in my Seurat data set, and also what file format is need to run <<FindTransferAnchors>>??? this is how my code looks like. and my trouble site is last line, which try to look for anchors. Thank you!
library(Seurat)
library(SeuratObject)
library(dplyr)
library(tidyverse)
library(patchwork)
WAT_M_Y <- Read10X(data.dir = "~/Desktop/GSE137869/WAT-M-Y/")
colnames(WAT_M_Y) <- gsub("_", "-", colnames(WAT_M_Y))
WAT_M_Y <- CreateSeuratObject(counts = WAT_M_Y,
project = "WAT_M_Y",
min.cells = 3,
min.features = 200)
WAT_M_Y [["percent.mt"]]<-PercentageFeatureSet(WAT_M_Y, pattern = "^Mt-")
WAT_M_O <- Read10X(data.dir =
"~/Desktop/GSE137869/WAT-M-O/")
colnames(WAT_M_O) <- gsub("_", "-", colnames(WAT_M_O))
WAT_M_O <- CreateSeuratObject(counts = WAT_M_O,
project = "WAT_M_O",
min.cells = 3,
min.features = 200)
WAT_M_O [["percent.mt"]]<-PercentageFeatureSet(WAT_M_O, pattern = "^Mt-")
male_wat <- merge(WAT_M_Y, y = c(WAT_M_O),
add.cell.ids = c("WAT_M_Y", "WAT_M_O"),
project = "male_wat")
male_wat@meta.data$type <- c(rep("male_young", ncol(WAT_M_Y)),
rep("male_old", ncol(WAT_M_O)))
show(male_wat)
male_wat <- NormalizeData(male_wat)
male_wat <- FindVariableFeatures(male_wat)
male_wat <- ScaleData(male_wat)
male_wat <- RunPCA(male_wat)
male_wat <- FindNeighbors(male_wat, dims = 1:30, reduction = "pca")
male_wat <- FindClusters(male_wat, resolution = 0.6, cluster.name = "unintegrated_clusters")
male_wat <- RunUMAP(male_wat, dims = 1:30, reduction = "pca", reduction.name = "umap.unintegrated")
DimPlot(male_wat, reduction = "umap.unintegrated", group.by = c("type", "seurat_clusters"))
male_wat <- IntegrateLayers(object = male_wat, method = CCAIntegration, orig.reduction = "pca", new.reduction = "integrated.cca",
verbose = FALSE)
# re-join layers after integration
male_wat[["RNA"]] <- JoinLayers(male_wat[["RNA"]])
male_wat <- FindNeighbors(male_wat, reduction = "integrated.cca", dims = 1:30)
male_wat <- FindClusters(male_wat, resolution = 1)
male_wat <- RunUMAP(male_wat, dims = 1:30, reduction = "integrated.cca")
View(male_wat@meta.data)
# Visualization
DimPlot(male_wat, reduction = "umap", group.by = c("type"))
wat_reference <- readRDS('~/Desktop/GSE137869/mouse_all_lite.rds')
wat_male.anchors <- FindTransferAnchors(reference = wat_reference, query = male_wat, dims = 1:30,
reference.reduction = "cca")
To view genes names, you can run following code-
rownames(male_wat)