Hi all,
I have produced count data for bulk rna-seq samples with the following groups: Trial 1 (high + low) and Trial 2 (high + low). There are at least 5 replicates in each of the 4 groups.
The main interest is differential expression between conditions (high and low), but we would also like to know the effect of trial, because trial 1 is a different cross breed to trial 2. My intention was to use deseq2 with the following design: ~trial + condition + trial:condition. I believe that would be correct. Then I can quantify the effect of trial on condition.
However, I am considering for simplicity, would it just be easier to run 2 separate analyses in deseq2, one for trial 1 and another for trial 2, with a simple design: ~condition. Then I could just compare the differentially expressed lists afterward. I would be unable to quantify the effect, but who cares, I would have the DEGs for each trial. It feels far more intuitive to me to do it this way to see the clear difference between trial 1 and trial 2, rather than having the added headache of what is basically a batch effect of interest.
Any advice would be appreciated,
Kenneth
I would expect a lot of biological variation if your parental lines are diverse, so, analyzing each one is better
Thanks JC.... just to play devils advocate...
What if instead of different parental lines, trial 1 was all male and trial 2 all female? How would it be any different? I would have thought that would produce the same amount of biological variation and is a common enough reason for using an interaction term in deseq2 . Why do we not separate those?