Best approach for identifying top proteins in a single cluster in single-cell analysis
1
1
Entering edit mode
3 months ago
singAsong ▴ 10

I have followed the Seurat workflow for clustering and successfully identified the individual clusters based on gene expression. Now, I want to identify and rank the top 10 highly expressed proteins within a single cluster from a set of 100 proteins. What would be the most appropriate test to perform in this case? Would calculating the average expression be sufficient, or is there a better approach? Please note, I am not comparing expression across clusters (e.g. cluster 1 vs. cluster 2), as in differential expression analysis.

ADT CITEseq Single-cell Seurat • 386 views
ADD COMMENT
1
Entering edit mode
12 weeks ago
bk11 ★ 3.0k

For ranking the top 10 highly expressed proteins within a single cluster without performing differential expression analysis across clusters, calculating the average expression of each protein in that cluster would be appropriate. Furthermore, you can add robustness by considering factors like the percentage of cells expressing the protein and variability across the cluster.

#for an instance these 10 proteins in which I m interested in:
my_proteins <- c("RAB31","DYNLT1","CD6","SLC16A3","TCEA3","CAST","CAP1","ALOX5","NOG","IFI35")
#you can simply use DotPlot function of Seurat to find the Average Expression (avg.exp) and Percent Expressed (pct.exp)
x <- DotPlot(object = pbmc, features = my_proteins)
x$data
         avg.exp    pct.exp features.plot id avg.exp.scaled
RAB31    0.000000000  0.0000000         RAB31  0   -0.859246147
DYNLT1   0.542604963  9.6491228        DYNLT1  0   -0.589111268
CD6      0.929876534 18.2748538           CD6  0    1.382608015
SLC16A3  0.052566628  1.1695906       SLC16A3  0   -0.789887207
TCEA3    0.495651342  8.4795322         TCEA3  0    2.250951593
CAST     0.350948031  7.7485380          CAST  0   -1.157371681
CAP1     1.687091107 30.4093567          CAP1  0   -1.575507894
ALOX5    0.123738798  2.0467836         ALOX5  0   -0.600642706
NOG      0.208829681  3.5087719           NOG  0    2.500000000
IFI35    0.462932098  9.0643275         IFI35  0   -0.739214199
RAB311   1.030589576 18.0873181         RAB31  1    1.665462561
DYNLT11  2.283880667 38.4615385        DYNLT1  1    1.594728330
CD61     0.065054977  1.6632017           CD6  1   -0.813184820
SLC16A31 0.959112032 16.0083160       SLC16A3  1    1.141282978
TCEA31   0.056845331  1.4553015         TCEA3  1   -0.388361263
CAST1    1.255305484 25.9875260          CAST  1    1.059962999
CAP11    2.446626408 37.8378378          CAP1  1   -0.627471139
ALOX51   0.810028214 17.2557173         ALOX5  1    1.063510075
NOG1     0.010729295  0.4158004           NOG  1   -0.324100527
IFI351   1.880683835 28.8981289         IFI35  1    1.242460588
RAB312   0.006360401  0.2100840         RAB31  2   -0.836647369
DYNLT12  1.193551089 15.7563025        DYNLT1  2    0.428446295
CD62     0.836573034 19.1176471           CD6  2    1.199555557
SLC16A32 0.129271765  2.9411765       SLC16A3  2   -0.571232804
TCEA32   0.242413217  6.5126050         TCEA3  2    0.841086164
CAST2    0.741097766 18.0672269          CAST  2   -0.059651710
CAP12    2.361364958 43.6974790          CAP1  2   -0.722865505
ALOX52   0.108799320  2.9411765         ALOX5  2   -0.647366519
NOG2     0.012720022  0.4201681           NOG  2   -0.293027709
IFI352   1.059002174 16.5966387         IFI35  2    0.260356898
RAB313   0.070882242  1.4534884         RAB31  3   -0.615150685
DYNLT13  0.336271756  5.8139535        DYNLT1  3   -1.004138846
CD63     0.111832147  2.6162791           CD6  3   -0.654408470
SLC16A33 0.065569041  1.1627907       SLC16A3  3   -0.751723286
TCEA33   0.000000000  0.0000000         TCEA3  3   -0.808558406
CAST3    0.688991895 12.2093023          CAST  3   -0.191113611
CAP13    2.374941021 34.8837209          CAP1  3   -0.707515132
ALOX53   0.919568650 16.5697674         ALOX5  3    1.268641769
NOG3     0.000000000  0.0000000           NOG  3   -0.492632666
IFI353   0.988544579 13.3720930         IFI35  3    0.158526274
RAB314   0.018124610  0.3436426         RAB31  4   -0.795222508
DYNLT14  0.844044568 15.4639175        DYNLT1  4   -0.073210098
CD64     0.809035275 14.0893471           CD6  4    1.143748674
SLC16A34 0.104128222  2.0618557       SLC16A3  4   -0.641225973
TCEA34   0.064638057  1.0309278         TCEA3  4   -0.332526970
CAST4    0.954840427 16.4948454          CAST  4    0.441347092
CAP14    3.882988151 46.0481100          CAP1  4    0.699209557
ALOX54   0.069709282  1.3745704         ALOX5  4   -0.772665832
NOG4     0.000000000  0.0000000           NOG  4   -0.492632666
IFI354   0.663050354 13.0584192         IFI35  4   -0.364247145
RAB315   0.722740362 20.9876543         RAB31  5    1.079451227
DYNLT15  1.753660256 46.2962963        DYNLT1  5    1.085746588
CD65     0.053015658  2.4691358           CD6  5   -0.855178803
SLC16A35 1.489386144 36.4197531       SLC16A3  5    1.885902012
TCEA35   0.022471203  0.6172840         TCEA3  5   -0.639665592
CAST5    0.588905193 19.1358025          CAST  5   -0.455416181
CAP15    4.382971430 75.3086420          CAP1  5    1.070459135
ALOX55   0.936051242 29.0123457         ALOX5  5    1.298490728
NOG5     0.000000000  0.0000000           NOG  5   -0.492632666
IFI355   1.586798381 44.4444444         IFI35  5    0.927752365
RAB316   0.000000000  0.0000000         RAB31  6   -0.859246147
DYNLT16  1.141027970 18.7096774        DYNLT1  6    0.358395923
CD66     0.419189591  7.7419355           CD6  6    0.247198707
SLC16A36 0.616712141 10.3225806       SLC16A3  6    0.544154990
TCEA36   0.054614547  1.2903226         TCEA3  6   -0.404420476
CAST6    1.697716548 23.8709677          CAST  6    1.834959993
CAP16    5.083685643 57.4193548          CAP1  6    1.536486993
ALOX56   0.000000000  0.0000000         ALOX5  6   -1.007921897
NOG6     0.000000000  0.0000000           NOG  6   -0.492632666
IFI356   1.649406833 25.1612903         IFI35  6    0.997693972
RAB317   0.621684709 25.0000000         RAB31  7    0.863984931
DYNLT17  0.765453718 34.3750000        DYNLT1  7   -0.199096666
CD67     0.127005438  6.2500000           CD6  7   -0.604337642
SLC16A37 0.415894551 25.0000000       SLC16A3  7    0.131868595
TCEA37   0.155522094  9.3750000         TCEA3  7    0.290053356
CAST7    0.697538909 31.2500000          CAST  7   -0.169273963
CAP17    3.066737690 78.1250000          CAP1  7    0.002601404
ALOX57   0.499256540 21.8750000         ALOX5  7    0.405876279
NOG7     0.070145903  3.1250000           NOG  7    0.577970946
IFI357   0.517834170 12.5000000         IFI35  7   -0.631466369
RAB318   0.406520363 15.3846154         RAB31  8    0.356614136
DYNLT18  0.086673889  7.6923077        DYNLT1  8   -1.601760259
CD68     0.000000000  0.0000000           CD6  8   -1.046001217
SLC16A38 0.000000000  0.0000000       SLC16A3  8   -0.949139305
TCEA38   0.000000000  0.0000000         TCEA3  8   -0.808558406
CAST8    0.306100585  7.6923077          CAST  8   -1.303442938
CAP18    3.425541285 30.7692308          CAP1  8    0.324602582
ALOX58   0.000000000  0.0000000         ALOX5  8   -1.007921897
NOG8     0.000000000  0.0000000           NOG  8   -0.492632666
IFI358   0.000000000  0.0000000         IFI35  8   -1.851862385

However, if your data has outliers or is not normally distributed, using the median expression instead of the mean may be more robust.

ADD COMMENT

Login before adding your answer.

Traffic: 2475 users visited in the last hour
Help About
FAQ
Access RSS
API
Stats

Use of this site constitutes acceptance of our User Agreement and Privacy Policy.

Powered by the version 2.3.6